Multinuclear NMR studies of mixtures of aluminium and gallium trihalides in benzene

Zbyněk Černý, Jiří Macháček, Jiří Fusek, Bohuslav Čásenský, Otomar Křīža and Dennis G. Tuck b

^a Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 250 68 Řež, Czech Republic

Received 16th March 2001, Accepted 3rd July 2001 First published as an Advance Article on the web 21st August 2001

The ²⁷Al and ⁷¹Ga NMR spectra of mixtures of M_2X_6 and M_2Y_6 (M = Al, Ga; $X \neq Y = Cl$, Br or I) in benzene are reported. All these systems show rapid inter-halogen exchange, and in some cases stable intermediates $M_2X_nY_{6-n}$ can be characterised spectroscopically. In particular, the results are used to identify the predominant species present in solutions prepared by mixing (i) Al₂Br₆ and Ga₂Cl₆, and (ii) Al₂I₆ and Ga₂Br₆, in benzene in various mole ratios. The expected $M_2X_3Y_3$ intermediates are found for M = Al or Ga, $X \neq Y = Cl$, Br, but with other mixed halide systems, unsymmetric structures predominate, and possible reasons for this are discussed. The experimental results are in agreement with thermodynamic predictions, and with arguments based on maximizing the M-X, Y electronegativity differences.

The trihalides of the Group 13 elements form a large number of addition compounds, which have been extensively studied because of their intrinsic importance in the field of coordination chemistry. The thermodynamic stabilities of these adducts differ widely, and a number of attempts have been made to establish stability sequences, both in terms of the properties of the metallic elements, and of the different donor elements involved. In the case of aluminium and gallium, the metal clearly has a substantial effect on the stabilities, since complexes of the latter with sulfur as the donor site are more strongly bonded than those with oxygen and nitrogen donors, while the converse is true for the trihalides of aluminium. Similarly, it is known that in competition between aluminium and gallium trihalides with hard donors, the lighter element forms the stronger complexes, whereas the opposite applies with sulfur donors. Some of the difficulties implicit in these relationships have been discussed elsewhere. 1,2

Most of the reported experimental studies of adduct formation have involved infrared spectroscopy, proton NMR, conductivity measurements, or thermochemical methods. The present paper is part of a series of investigations of such systems through the application of multinuclear NMR spectroscopy, using both ²⁷Al and ⁷¹Ga chemical shifts to investigate changes at the coordinated metal atom as a result of complex formation. The dearth of spectroscopic information on the parent Lewis acids is surprising; there is a shortage of reliable data for the aluminium trihalides, and an apparent absence of results for gallium triiodide. In this paper, we report NMR studies of these typical hard and soft acids, and of the halogen exchange reactions which can occur in solutions of these trihalides in benzene.

Experimental

General

Benzene was freshly distilled from CaH2 before use. Aluminium(III) chloride (Fluka, AG, Buchs SG puriss. Grade, anhydrous) was used as supplied; AlBr₃ and AlI₃ (Alfa Products) were freshly distilled before use. Gallium(III) chloride and bromide were prepared by reacting the metal with halogen.3,4

FULL PAPER

NMR spectroscopy

The ²⁷Al and ⁷¹Ga NMR spectra were recorded by the techniques described earlier. Chemical shifts for ²⁷Al are relative to $[Al(H_2O)_g]_{aq}^{3+}$ for which $\delta(^{27}Al) = 0$, and for ^{71}Ga , to [Ga- $(H_2O)_6|_{aq}^{3+}$, for which $\delta(^{71}Ga) = 0$. The reproducibility of δ and the half-width (ω_{ν}) values was established by the methods used in previous work.^{4,5}

Solution preparation

Samples for NMR investigation were prepared in an atmosphere of dry argon, using weighed quantities of both trihalide and benzene placed directly into NMR tubes. Concentrations are expressed throughout as wt% (i.e. weight of solute (g) per 100 g of solution), and as molality; the latter leads to the initial AlX₃: GaY₃ mole ratios for mixed halide systems. All samples were subsequently treated for 1 h in an ultrasonic bath at room temperature, and then sealed, after which each was heated to 60° for 15 min. to ensure equilibration. In the case of ²⁷Al NMR measurements (Fig. 1A–C) the spectra were recorded at this temperature to allow direct comparison with previous studies of AlCl₃ in benzene.⁵ For the results in Fig. 2A, the ⁷¹Ga spectrum is that of a sample held at 40 °C, since at this temperature it was possible to get good signal: noise ratios; below this the limited solute solubility made the results unreliable. All other results refer to solutions at room temperature (ca. 23 °C).

When homogeneous solutions of AlX, and GaY, (X = Br, I;Y = Cl, Br) in benzene were mixed, precipitation occurred. In order to establish the equilibrium solute concentrations in the samples used for NMR study, identical mixtures were analysed by chelatometric titration. These results, and the composition of the initial reaction mixture, are given in Tables 1 and 2, and the relevant spectra are shown in Figs. 1 and 2.

In addition to the AlX₃/GaY₃ studies, we recorded the ²⁷Al

^b Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON Canada N9B 3P4

Table 1 Solutions of AlBr₃ and GaCl₃ in benzene: experimental data appropriate to Fig. 1

Spectrum (Fig. 1)	Initial wt%	[GaCl ₃]/M	Initial AlBr ₃ : GaCl ₃ mole ratio	Final equilibrium concentration/wt%		
				Ga	Al	Equilibrium Al : Ga mole ratio
A	14.5	0.82	1:3	0.06	5.6	1:36
В	12.0	0.68	1:2	0.06	4.7	1:30
C	10.0	0.57	1:1	0.08	4.0	1:19
D	6.0	0.34	1.8:1	0.55	2.4	1:17
E	5.0	0.28	2.6:1	1.2	2.1	1.5:1

Table 2 Solutions of AlI₃ and GaBr₃ in benzene; experimental data appropriate to Fig. 2

Spectrum (Fig. 2)	Initial wt%	[GaBr ₃]/M	Initial AlI ₃ : GaBr ₃ mole ratio	Final equilibrium concentration/wt%		For III is an Alla Communication
				Al	Ga	Equilibrium Al : Ga mole ratio
A	4.1	0.13	3.1:1	1.1	0.12	24:1
В	6.3	0.20	2:1	1.1	0.20	14:1
C	10.3	0.33	1:0.9	0.95	1.8	1.4:1
D	19.3	0.62	1:2.1	0.80	4.3	0.48:1
E	21.0	0.68	1:3	0.60	4.7	0.33:1

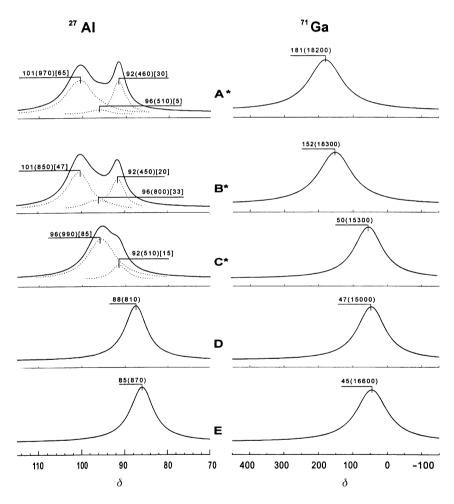


Fig. 1 27 Al and 71 Ga NMR spectra of mixtures of Al₂Br₆ and Ga₂Cl₆ in benzene at room temperature. A–E refer to data in Table 1. Numbers given δ , halfwidth ω_{k} (Hz), percentage intensity. Asterisks identify solutions for which 27 Al spectra were recorded at 60 °C after 30 min heating.

spectra of heterogeneous mixtures of AlCl₃/AlBr₃ and AlCl₃/AlI₃ (*i.e.*, saturated solutions) in benzene (δ , ω_{16}), with the results shown in Figs. 3 and 4, and of homogeneous benzene solutions of AlBr₃/AlI₃ (Fig. 6). The corresponding ⁷¹Ga NMR spectra of homogeneous solutions of GaCl₃/GaBr₃ and GaBr₃/GaI₃ in the same solvent are illustrated in Figs. 7 and 8.

Results and discussion

Thermodynamic considerations

The halogen exchange reaction between trihalides of aluminium and gallium [eqn. (1)] can be considered in terms of the

$$AlX_3 + GaY_3 \longrightarrow AlY_3 + GaX_3 \tag{1}$$

2699

J. Chem. Soc., Dalton Trans., 2001, 2698–2703

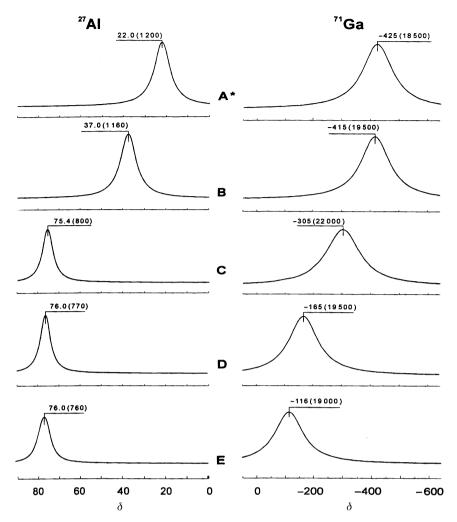


Fig. 2 27 Al and 71 Ga NMR spectra of benzene solutions of GaBr₃ and AlI₃ at room temperature; labels refer to data in Table 2. For A, the Ga spectrum was recorded at 40 $^{\circ}$ C.

Table 3 Standard enthalpies of formation $(\Delta H_1^*)^a$ and calculated enthalpies of reaction (ΔH_1^*) for the process $AlX_3(s) + GaY_3(s) \rightarrow AlY_3(s) + GaX_3(s)$ (all in kJ mol⁻¹)

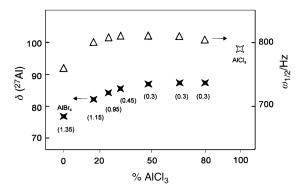
3 ()	3 () (
	$-\Delta H^{\circ}_{i}(s)$						
	AlX_3	GaY_3	AlY ₃	GaX_3	$-\Delta H_{\mathrm{r}}^{\circ}$		
X = Br $Y = Cl$	511	524	705	386	56		
X = I Y = Br	309	386	511	239	55		

^a $\Delta H_{\rm f}^{\circ}$ values from ref. 6.

hard–soft acid–base concept, in which case the exchange will be expected to proceed spontaneously so as to favour hard–hard interactions. A more quantitative approach employs the standard enthalpies of formation of the appropriate trihalides; two such sets of data are presented in Table 3. One qualification to this treatment is that the $\Delta H_{\rm f}^{\circ}$ values are for the solids, but it is reasonable to assume that the overall differences in the enthalpies of solution in benzene will not change the final conclusion substantially; the neglect of entropy changes is also insignificant, since $T\Delta S$ for these reactions at 25 °C is of the order of 0.5 kJ mol⁻¹.6 The $-\Delta H_{\rm f}^{\circ}$ results clearly predict that the exchange reactions [eqns. (2) and (3)] will proceed in the direction

$$AlBr_3 + GaCl_3 \rightarrow AlCl_3 + GaBr_3$$
 (2)

and


$$AlI_3 + GaBr_3 \longrightarrow AlBr_3 + GaI_3$$
 (3)

A third predictor is the electronegativity differences. From the values Cl 3.16, Br 2.96, I 2.66, Al 1.16, Ga 1.81, the function $(\chi_Y - \chi_{Al})^2 + (\chi_X - \chi_{Ga})^2$ has the values 3.94 (X = Br, Y = Cl), 3.65 (X = Cl, Y = Br), 2.5 (X = I, Y = Br) and 2.44 (X = Br, Y = I), and the direction of the reaction should correspond to a maximization of this function.⁷

Since we are dealing with reactions in the non-polar solvent benzene, the solute species will be written in the remainder of this paper as the dimers M_2X_6 . In such terms, it follows that a reaction between a moles Al_2Br_6 and b Ga_2Cl_6 , with $a \le b$, should give a mixture whose ^{27}Al NMR spectrum will be of Al_2Cl_6 alone, while the ^{71}Ga spectrum will be that of a mixture of Ga_2Cl_6 and Ga_2Br_6 . Similarly, when a > b, the ^{27}Al spectrum will be that of a mixture of Al_2Cl_6 and Al_2Br_6 , with a ^{71}Ga spectrum uniquely that of Ga_2Br_6 . Analogous predictions can be made for the Ga_2Br_6/Al_2I_6 system, and we return to these below. This analysis implies that in some cases the experimental spectra will be of mixtures of $M_2X_6 + M_2Y_6$ for both nuclei, and we therefore first discuss the ^{27}Al and ^{71}Ga spectra of such mixtures, before returning to the systems considered in Tables 1 and 2, and the corresponding spectra in Figs. 1 and 2.

Al₂X₆/Al₂Y₆ systems

The ²⁷Al NMR spectra of saturated benzene solutions of mixtures of Al₂Cl₆ + Al₂Br₆ and Al₂Cl₆ + Al₂I₆ are summarized in Figs. 3 and 4 respectively; these show $\delta(^{27}\text{Al})$ and ω_{v_0} ,

Fig. 3 27 Al NMR spectra of saturated benzene solutions of mixtures of Al₂Cl₆ + Al₂Br₆; triangles show $\omega_{\%}$, and crosses $\delta(^{27}$ Al), as a function of the initial mole fraction of Al₂Cl₆. Numbers in parentheses are the equilibrium Al concentrations (wt%).

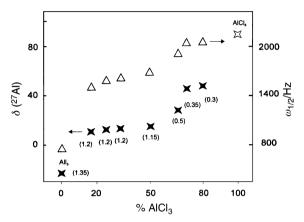


Fig. 4 27 Al NMR spectra of saturated benzene solutions of Al₂Cl₆ + Al₂I₆; symbolism as in Fig. 3.

and the analytically determined Al content, all as a function of the initial composition. In both cases, δ for Al₂Cl₆ is that determined previously 5 as 98 ppm; the half-width is very large, and is not shown in either figure. In contrast to the AlCl₄-/AlBr₄system, which shows resonances from all five possible AlCl_nBr_{4-n} anions, only one resonance is observed in Al₂Cl₆/ Al₂Br₆ mixtures, indicating that the solute species are in rapid chemical exchange relative to the ²⁷Al NMR time scale. The results for $\delta(^{27}\text{Al})$ show significant deviation from the monotonic dependence on composition, and there is a distinct plateau at 88 ± 1 ppm in the range $30-80 \text{ mol}\% \text{ Al}_2\text{Cl}_6$. We identify this as the chemical shift of Al₂Cl₃Br₃, which is apparently the thermodynamically stable compound of highest chlorine content, with a solubility in benzene corresponding to [A1] = 0.3wt%. A similar conclusion can be reached from the plateau in the $\omega_{\frac{1}{2}}$ plot.

A confirmation of this assignment can be obtained from Fig. 5, in which the chemical shifts for Al_2X_6 and Ga_2X_6 are shown as a function of the total ligand electronegativity $\Sigma\chi$; the sources of the chemical shifts for these molecules, and for MX_4^- anions, are given in Table 4. For these latter species, as for other halogen derivatives of the Group 13 elements, ⁸⁻¹⁴ monotonic curves similar to those in Fig. 5 have been constructed. The value of $\delta(^{27}Al)=88$ derived from Fig. 3 corresponds to $\Sigma\chi=18.3$; the derived value for $Al_2Cl_3Br_3$ is 18.36, supporting the above assignment of the species present at the plateau in Fig. 3.

Fig. 4 refers to the $Al_2Cl_6 + Al_2I_6$ system, and we note here that the δ and $\omega_{\frac{1}{2}}$ values for Al_2I_6 in benzene are for a saturated solution whose concentration is 1.35 wt%. A distinct plateau can be seen, corresponding to $\delta(^{27}Al) = 16 \pm 1$, or $\Sigma \chi = 16.1$; the calculated value for Al_2I_5Cl is 16.46. There is a less well-defined feature at $\delta = 44$; the derived value of $\Sigma \chi = 16.7$ corresponds to $Al_2I_4Cl_2$ (calculated value 16.96), although the steepness of the

Table 4 $^{-27}{\rm Al}$ and 71 Ga NMR chemical shifts " for M_2X_6 and MX_4^- in non-aqueous solvent

	Al	Ref.	Ga	Ref.
M ₂ Cl ₆	98	5	222	3
M_2Br_6	78	4	45	4
$M_2 l_6$	-24	9	-425	b
MCl_4^-	103	8,10	250	3, 11, 12
$\mathrm{MBr_4}^-$	80	8	63	11, 12
MI_4^-	-27	8	-455	11, 12

^a In ppm; ²⁷Al relative to [Al(H₂O₆]_{aq}³⁺ for which δ (²⁷Al) = 0; ⁷¹Ga relative to [Ga(H₂)₆]_{aq}³⁺ for which δ (⁷¹Ga) = 0. ^b This work; see Fig. 8.

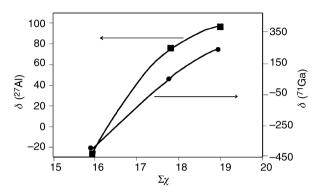
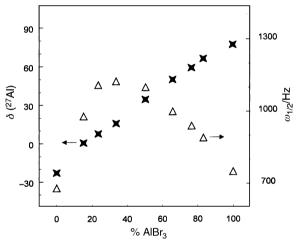



Fig. 5 27 Al and 71 Ga chemical shifts as a function of total ligand electronegativity in M_2X_6 (M = Al, Ga; X = Cl, Br, I).

Fig. 6 27 Al NMR spectra of solutions of $Al_2Br_6 + Al_2I_6$ in benzene (total Al concentration 1.0 wt%); symbolism as in Fig. 3.

curve in this region on Fig. 5 places some uncertainty on this conclusion. In contrast to the Al_2Cl_6/Al_2Br_6 system in which $Al_2Cl_3Br_3$ apparently predominates over a wide concentration range, these mixed iodo–chloro complexes only exist over narrow ranges, although their solubility is high (≈ 1.2 and ≈ 0.3 wt% Al respectively). The half-width plots also show plateaux at the same concentrations as the δ values, in keeping with the existence of such mixed halide complexes.

Unlike those mixtures in which Al_2Cl_6 is a constituent, the $Al_2Br_6 + Al_2I_6$ system produces homogeneous solutions over the whole composition range. Fig. 6 presents the $\delta(^{27}Al)$ and $\omega_{1/2}$ results for solutions containing 1.0 wt% Al. The chemical shifts of these mixtures show an almost linear dependence on composition, so that no unique thermodynamically stable mixed species can be identified. On the other hand, there is a maximum in the $\omega_{1/2}$ dependence on composition at 33% AlBr₃. The corresponding chemical shift is 16 ppm, which by interpolation in Fig. 5 corresponds to Al_2BrI_5 (derived $\Sigma\chi=16.3$, calculated value 16.26). The dependence of line-width on the

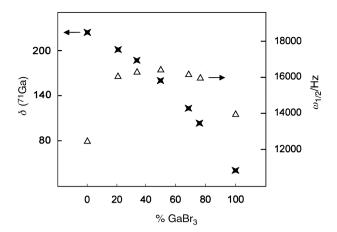


Fig. 7 71 Ga NMR spectra of solutions of $Ga_2Cl_6 + Ga_2Br_6$ in benzene (total Ga concentration 1.5 wt%); symbolism as in Fig. 3.

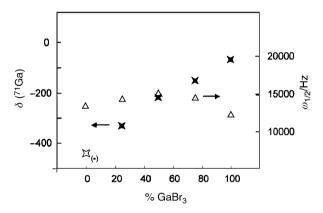


Fig. 8 71 Ga NMR spectra of solutions of $Ga_2Br_6 + Ga_2I_6$ in benzene (total Ga concentration 1.5 wt%); symbolism as in Fig. 3.

composition indicates that the rate of halogen exchange is close to the intermediate rate between the Al_2Br_6 and Al_2I_6 environments. In this region, the line-width depends on the rate of exchange, on the composition, on the transverse relaxation times and on the radio frequency used, 15 and on the composition of the binary mixture, involving as it does all the exchanging sites, including the intermediates. The effect of quadrupolar coupling relaxation is believed to be negligible in these systems. For $AlBr_3/AlI_3$, for example, the 27Al spin–spin relaxation time T2 is less than T1 by a factor of 2–4, and the spectral changes observed are therefore reasonably discussed in terms of chemical exchange.

Ga₂X₆/Ga₂Y₆ systems

We have studied mixtures of $Ga_2Cl_6+Ga_2Br_6$ and $Ga_2Br_6+Ga_2I_6$ in benzene, with the results shown in Figs. 7 and 8. These homogeneous solutions all contained 1.5 wt% Ga, with the exception of pure Ga_2I_6 for which a saturated solution at room temperature had a concentration of 0.8 wt%. In each case, there is a smooth dependence of $\delta(^{71}Ga)$ on composition, but $\omega_{1/2}$ shows a clear maximum. For the chloride–bromide system, this occurs at the equimolar composition, and the corresponding $\delta=173$ implies that the predominant species at this point is either $Ga_2Cl_3Br_3$ ($\Sigma\chi=18.36$) or $Ga_2Cl_4Br_2$ ($\Sigma\chi=18.56$), since the derived value from Fig. 5 is 18.5. Analogous arguments for the bromide–iodide mixtures give the maximum in $\omega_{1/2}$ also at the equimolar point, with $\delta=-220$, and $\Sigma\chi=16.6$; $\Sigma\chi$ for $Ga_2Br_3I_3$ and $Ga_2Br_2I_4$ are 16.86 and 16.56 respectively, slightly favoring the latter composition for the most stable species.

The maxima in the line-width–composition dependence again indicate that the rate of halogen exchange is close to the intermediate exchange rate region, as in the $Al_2Br_6 + Al_2I_6$ case. A comparison of the data reveals that for $Ga_2Cl_6 + Ga_2Br_6$, the

maximum $\omega_{\frac{1}{2}}$ (16.5 kHz) is 15–35% greater than the values for Ga₂Cl₆ (12.5 kHz) and Ga₂Br₆ (14.0 kHz). In the aluminium system noted above, this factor is about 40%, indicating that the exchange is faster in the gallium halides.

Al₂Br₆/Ga₂Cl₆ systems

It is now possible to examine the spectra in Fig. 1 in the light of the above discussion. The ²⁷Al spectra in Fig. 1A and B are almost identical to those discussed in a previous paper⁵ and show the presence of the hydrolysis products of Al₂Cl₆, which were identified earlier as the ionic species $HAlCl_4$ ($\delta = 101$) and H[HOAlCl₃] (δ = 96) as aggregates, and the neutral dimer [HOAlCl₂]₂ ($\delta = 92$). In keeping with this earlier discussion, there is also a broad unresolved resonance from the small quantity of dissolved Al₂Cl₆, although the solubility of this substance in benzene at room temperature is very low. The Al concentration in these two solutions (0.06 wt%; Table 1) is close to that found for a solution prepared by equilibrating AlCl₃ and nominally anhydrous benzene,5 and represents the sum of these various Al/Cl/OH solutes. The hydrolysis products are of decreasing significance as the Al concentration rises, being marginal in Fig. 1C and negligible in Figs. 1D and E. The series of ²⁷Al NMR spectra show that with increasing total solute concentration (Table 1), the dilute solution of Al₂Cl₆ and hydrolysis products gives way to a much more concentrated solution apparently containing only one species (Fig. 1E) for which $\delta(^{27}\text{Al}) = 86 \pm 1$. This can be identified on the basis of the discussion above as Al₂Cl₃Br₃, which as noted earlier is significantly more soluble than Al₂Cl₆.

The 71 Ga NMR spectra in these solutions (Figs. 1A–E) show no evidence of hydrolysis products, presumably because any H_2O impurity reacts preferentially at the more electropositive aluminium(III) sites. Only one 71 Ga resonance is observed in each case, with the chemical shift changing from 181 ppm in Fig. 1A to ca. 45 ppm in Fig. 1E. The higher value can be ascribed to $Ga_2Cl_4Br_2$ ($\Sigma\chi=18.6$; calculated value 18.56), while the lower is clearly Ga_2Br_6 (see Table 4, and ref. 4).

These findings are in good agreement with the predictions made above for a mixture of a Al₂Br₆ and b Ga₂Cl₆. When b > a (Figs. 1A and B), the only aluminium species detected is essentially Al₂Cl₆, and its hydrolysis products, while gallium is present as a mixture of Ga₂Cl₆ and Ga₂Br₆, co-existing in rapid equilibration with Ga₂Cl₄Br₂ as the thermodynamically most stable species. For a > b (Figs. 1D and E), aluminium is present as Al₂Cl₃Br₃, presumably in fast exchange with very small quantities of Al₂Cl₆ and Al₂Br₆, while the only gallium halide in this system is Ga₂Br₆.

Al₂I₆/Ga₂Br₆ system

Both aluminium and gallium exhibit only one signal under all conditions studied (see Table 2 for concentration range). For 27 Al, $\delta = 22$ (Fig. 2A) when this element is in large excess; Al₂BrI₅ was identified earlier as the stable complex in Al₂Br₆/Al₂I₆ mixtures with $\delta = 16$. Increasing the Ga: Al mole ratio (Figs. 2B–E), and hence the Br: I ratio, causes the maximum to move to lower field, with the chemical shift becoming constant at 76 ± 1 ppm, which immediately identifies the solute as Al₂Br₆ (cf. Table 4). The half-width (760 Hz) is close to that for a 1% solution of Al₂Br₆ in benzene (cf. Fig. 3 and ref. 4).

The 71 Ga NMR chemical shifts from $\delta = -425$ in Fig. 2A (*cf.* $\delta = -425$ for Ga₂I₆, Table 4) to -116 ppm at the highest Ga concentrations (Fig. 2E). Interpolation from Fig. 5 identifies this as Ga₂Br₃I₃ (see above).

The nature of these spectra is such that no reliable equilibrium constants could be derived for eqns. (2) and (3). It appears that K_2 and K_3 are of similar magnitude, in keeping with the thermodynamic data in Table 3, but the only conclusion must be that the results agree qualitatively with these predictions.

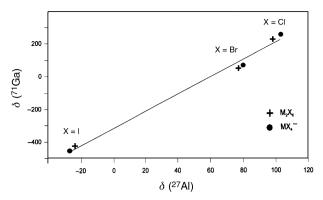


Fig. 9 Correlation of 27 Al and 71 Ga chemical shifts in M_2X_6 (in benzene solution) and MX_4^- (in chloroform). Data from Table 4.

Correlations between $\delta(^{27}\text{Al})$ and $\delta(^{71}\text{Ga})$

As noted earlier, Table 4 presents literature data for the chemical shifts of M_2X_6 and MX_4 derivatives of aluminium and gallium. In both series, the range of chemical shifts is clearly greater for ⁷¹Ga, and the linear relationship shown in Fig. 9 (y = 5.2x - 316; r = 0.995) establishes that this is greater by a factor of ca. 5.3. This correlation also serves to confirm our earlier ⁵ assignment of $\delta(^{27}Al) = 98$ for Al_2Cl_6 in benzene.

The structure of mixed halide solutes

In five of the mixed halide systems reported in this work, we have identified solute species of the type $M_2X_nY_{6-n}$, the specific entities being $Al_2Cl_3Br_3$, Al_2Cll_5 , $Al_2Cl_2I_4$, Al_2BrI_5 , $Ga_2Cl_3Br_3$ (or $Ga_2Cl_4Br_2$), $Ga_2Br_2I_4$ and/or $Ga_2Br_3I_3$. It is clear that the symmetrical $M_2X_3Y_3$ species are not formed exclusively, and indeed in most cases there is no evidence for their existence. Give that monomeric MX_3 molecules are of negligible importance in non-aqueous solutions, the question of the structure of these mixed halide complexes must be discussed in terms of dimers. These can be of two related types. The classical approach is to write a neutral halide-bridged form of (say) $X_2M(\mu-Y)_2MX_2$, in which case the predominance of compounds with high iodine content is explained through the form IA (Scheme 1). The alter-

Scheme 1

native approach is based on a series of reports which show that singly-bridged bipolar structures must be considered as significant in non-aqueous solution. For aluminium, NMR studies on this point are supported by Raman spectroscopy of Al₂Br₆ in aromatic solvents, ¹⁶ while for Ga₂X₆, NMR spectra, ⁴ vapour pressure measurements, ¹⁷ and electron spin resonance spectroscopy ¹⁸ all support the structure shown as Fig. 1B. In this case, the predominance of iodine in the complex is explained by the charge distribution, with a coordinatively saturated MI₄⁻ moiety stablizing the MY½ group, which is itself then a favourable site for solvation. This may explain the enhanced solubility observed in the AlCl₃/AlBr₆ system. Equally, the availability of the MY₂ site may enhance the rate of halogen exchange in these systems. Further studies of this problem are underway.

Acknowledgements

This work was supported in part by the Ministry of Education of the Czech Republic (Project LB 98233).

References

- 1 N. N. Greenwood and A. E. Earnshaw, *The Chemistry of the Elements*, Pergamon Press, Oxford, 1986, p. 261.
- 2 D. G. Tuck, in *The Chemistry of Aluminium, Gallium, Indium and Thallium*, ed. A. J. Downs, Chapman and Hall, London, 1993, p. 430.
- 3 Z. Ćerný, J. Macháček, J. Fusek, O. Kříž, B. Čásenský and D. G. Tuck, J. Organomet. Chem., 1993, 456, 20.
- 4 Z. Ćerný, J. Macháček, J. Fusek, O. Kříž, B. Čásenský and D. G. Tuck, *Inorg. Chim. Acta*, 1996, **247**, 199.
- 5 Z. Ćerný, J. Macháček, J. Fusek, O. Kříž, B. Čásenský and D. G. Tuck, *Inorg. Chim. Acta*, 2000, 302, 55.
- 6 NBS Technical Note 270–3, ed. D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey and R. H. Schumm, National Bureau of Standards, Washington, DC, 1968.
- 7 J. E. Huheey, E. A. Keiter, K. L. Keiter, *Inorganic Chemistry*, Harper Collins, New York, 4th edn., 1993, p. 197.
- 8 R. G. Kidd and D. R. Truax, J. Am. Chem. Soc., 1968, 90, 6867.
- 9 Z. Ćerný, J. Macháček, J. Fusek, S. Hermānek, O. Kříž and B. Čásenský, *J. Organomet. Chem.*, 1991, **402**, 139.
- 10 Z. Ćerný, J. Macháček, J. Fusek, O. Kříž, B. Čásenský and D. G. Tuck, J. Chem. Soc., Dalton Trans., 1998, 1439.
- B. R. McGarvey, M. J. Taylor and D. G. Tuck, *Inorg. Chem.*, 1981, 20, 2010.
- 12 R. Colton, D. Dakternicks and J. Hauenstein, Aust. J. Chem., 1981, 34, 949.
- 13 R. J. Thompson and J. C. Davis, Inorg, Chem., 1965, 4, 1464.
- 14 B. R. McGarvey, C. O. Trudell, D. G. Tuck and L. Victoriano, *Inorg. Chem.*, 1980, 19, 342.
- 15 K. Kimura, J. Magn. Reson., 1983, 52, 13.
- 16 R. Schürmann and H. H. Perkampus, Spectrochim. Acta, Part A, 1979, 35, 45.
- 17 J. C. Brown, L. P. Eddy and R. Wong, J. Am. Chem. Soc., 1953, 75, 6275
- 18 C. Hambly and J. B. Raynor, J. Chem. Soc., Dalton Trans., 1974, 604.